Первый компьютер: когда появился и кто его изобрел

Взвешенное решение

С древности своеобразным счетным устройством служили человеку весы (древнейшие весы были обнаружены археологами в Месопотамии и относятся к V тысячелетию до нашей эры). Их применяли для определения количества однородных предметов путем взвешивания вместо пересчета. Неслучайно названия некоторых денежных единиц как в период античности (мина, либральный асс), так и в более позднее время (фунт, французский ливр, итальянская лира) происходят от единиц измерения веса. Чеканившиеся в СССР с 1926 по 1991 годы монеты в 1, 2, 3 и 5 копеек имели вес соответственно в 1, 2, 3 и 5 граммов, что позволяло определять сумму большого числа монет простым взвешиванием.

Важным этапом развития в древности стало появление счетных досок, получивших общее название «абак». Происхождение этого термина не установлено. Возможно, греческое слово ἄβαξ происходит от общесемитского корня слов со значением «пыль». Такое название могло быть связано с тем, что для вычислений использовались доски с углублениями и линиями, на которых в определенном порядке раскладывались однородные предметы (камешки, кости и другие), а чтобы они не скатывались с доски, она покрывалась слоем песка. Считается, что раньше, чем в Греции, абак стали применять в Вавилоне, Египте и Финикии, но археологических подтверждений этому пока не обнаружено. Пифагор (VI век до нашей эры) полагал, что счет с помощью абака должен входить в курс математики.

В Древнем Риме абак появился, вероятно, в V–VI веках и назывался calculi и abaculi (abacus). Римские абаки изготавливались из различных материалов (бронза, слоновая кость, цветное стекло). Бронзовый римский абак, хранящийся в Национальном археологическом музее Неаполя, представляет собой доску с прорезанными в ней щелями, в которых перемещаются костяшки. Семь длинных щелей с четырьмя костяшками, одна — с пятью, над каждой длинной щелью — короткая с одной костяшкой. Над длинными щелями помечены значения разрядов: миллионы, сотни тысяч, десятки тысяч, тысячи, сотни, десятки, единицы, унции (то есть двенадцатые части). В щели, помеченной « », — пять костяшек (то есть 5/12). В правой части абака — щели с пометками, означающие 1/2, 1/4 и 1/6 унции.

Распад и падение Римского государства прервали развитие счетной техники. Абак в Европе был надолго забыт.

В Китае аналог абака — суаньпань — появился в VI веке и постепенно вытеснил традиционную систему счета на палочках. Со временем его устройство менялось, современный вид он приобрел в XVII веке. Суаньпань представляет собой прямоугольную раму, разделенную на две части. В большом отделении («Земля») на каждой проволоке — 5 шариков, в меньшем («Небо») — 2 шарика. Проволоки соответствуют десятичным разрядам, каждый шарик большего поля — единице, меньшего — пяти. На суаньпане можно не только производить четыре арифметических операции, но и извлекать квадратные и кубические корни.

В XV–XVI веках суаньпань был завезен в Японию, где получил название «соробан». В Японии он был модифицирован (последний раз — в 1930 году).

Абак, забытый в Европе после распада Римской империи, вновь получил распространение в X веке благодаря монаху Герберту Орильякскому (938–1003), ставшему впоследствии римским папой Сильвестром II. Герберт во время путешествия в Кордовский халифат познакомился с арабской системой цифр и с абаком.

В XV веке в Англии появилась новая форма абака — «счет на линиях», — распространившаяся в XV–XVI веках по континентальной Европе. Для счета на линиях использовались горизонтально разлинованная доска и металлические жетоны, которые в Германии назывались счетными пфеннигами, в других странах — фишками. Жетоны при счете выкладывались не только на линиях, но и между ними. Разрядность повышалась снизу вверх. Правила счета на линиях излагались во многих учебниках, изданных в XV–XVII веках, счет упоминается в созданных в то время пьесах Шекспира и Мольера.

Как люди понимали общественное развитие в разные исторические эпохи?

  1. Античность: древние греки и римляне считали, что общество развивается циклично – каждое событие и явление, каждый процесс обязательно повторяется спустя какое-то время.
  2. Средневековье: в Средневековье под влиянием христианства сложилось представление о линейном развитии общества, которое, как и человек, рождается, взрослеет и умирает.
  3. Новое время: в данный период общественное развитие рассматривается как постоянный прогресс – с каждым последующим столетием или даже годом общество и населяющие его индивиды становятся всё более высокоразвитыми и сложными в своём устройстве. Границы прогресса не обозначены, однако, присутствует понимание его противоречивости, что можно проследить по различным утопиям, появляющимся именно в Новое время.
  4. Современность: в наши дни общество непрерывно эволюционирует, однако, эволюция эта заключается далеко не только в одном прогрессе. Общественное развитие рассматривается как крайне противоречивое, неравномерное и нелинейное, точнее не только линейное. Так одни элементы общества могут прогрессировать, а другие одновременно регрессировать или находиться в состоянии застоя.

Направления развития компьютеров

Нейрокомпьютеры можно отнести к шестому поколению ЭВМ. Несмотря на то, что реальное применение нейросетей началось относительно недавно, нейрокомпьютингу как научному направлению пошел седьмой десяток лет, а первый нейрокомпьютер был построен в 1958 году. Разработчиком машины был Фрэнк Розенблатт, который подарил своему детищу имя Mark I.

Теория нейронных сетей впервые была обозначена в работе МакКаллока и Питтса в 1943 г.: любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Интерес к нейрокомпьютингу снова вспыхнул в начале 80-х годов и был подогрет новыми работами с многослойным перцептроном и параллельными вычислениями.

Нейрокомпьютеры — это ПК, состоящих из множества работающих параллельно простых вычислительных элементов, которые называют нейронами. Нейроны образуют так называемые нейросети. Высокое быстродействие нейрокомпьютеров достигается именно за счет огромного количества нейронов. Нейрокомпьютеры построены по биологическим принципу: нервная система человека состоит из отдельных клеток — нейронов, количество которых в мозгу достигает 1012, при том, что время срабатывания нейрона — 3 мс. Каждый нейрон выполняет достаточно простые функции, но так как он связан в среднем с 1 — 10 тыс. других нейронов, такой коллектив успешно обеспечивает работу человеческого мозга.

Представитель VI-го поколения ЭВМ — Mark I

В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно. Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:

  • Световые потоки, в отличие от электрических, могут пересекаться друг с другом;
  • Световые потоки могут быть локализованы в поперечном направлении нанометровых размеров и передаваться по свободному пространству;
  • Взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создания параллельных архитектур.

В настоящее время ведутся разработки по созданию компьютеров полностью состящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.

Оптический компьютер имеет невиданную производительность и совсем другую, чем электронный компьютер, архитектуру: за 1 такт продолжительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных около 1 мегабайта и больше. К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров.

Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.

Биологические компьютеры — это обычные ПК, только основанные на ДНК-вычислений. Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.

Молекулярные компьютеры — это ПК, принцип действия которых основан на использовании изменении свойств молекул в процессе фотосинтеза.  В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается только присвоить определенные логические значения каждом состояния, то есть «0» или «1». Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, «переключать» которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас «не за горами».

История развития компьютеров еще не закончена, помимо совершенствования старых, идет и разработка совершенно новых технологий. Пример тому  квантовые компьютеры — устройства, работающие на основе квантовой механики. Полномасштабный квантовый компьютер — гипотетическое устройство , возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на передовом крае современной физики. Экспериментальные квантовые компьютеры уже существуют; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Второе поколение — ЭВМ на транзисторах.

Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка ). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.

В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом ( junction transistor ). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.

Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.

Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.

В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м2. PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!

Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1

В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.

Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах ( «Раздан-2», «Минск — 2», «М-220» и «Днепр» ) находились еще в стадии разработки.

Узелок завяжется, узелок развяжется

Различные системы для счета с помощью узелков существовали у разных народов — китайцев, персов, индийцев и других. Эта система упоминается в трудах греческого историка Геродота (V век до нашей эры). Древнекитайский философ Лао-цзы (VI–V век до нашей эры) писал об употреблении веревок и узлов для счета как об основательно забытом обычае.

Наивысшей степени развития узелковое письмо достигло в Южной Америке в эпоху расцвета государства инков (XV век). Система инков, называвшаяся «кипу», представляла собой сложные веревочные сплетения и узлы, которые могли содержать различное количество свисающих нитей — от нескольких штук до более полутора тысяч.

С помощью кипу не только проводились арифметические вычисления, но и велось исчисление времени, делались картографические описания, записывались законы и генеалогические сведения, передавались донесения, велся бухгалтерский учет. Читали кипу специально подготовленные профессионалы — «кипукумайоки».

Через полвека после уничтожения государства инков конкистадорами (1532–1533 годы) колониальные власти запретили кипу, но использование этой счетной системы в некоторых районах продолжалось до начала XX века.

Программируемые вычислители

Результатом эволюции вычислительных устройств явилось создание электронной вычислительной машины в том виде, в котором мы привыкли ее сейчас видеть. Однако и ЭВМ прошли несколько этапов развития, связанных в первую очередь, с развитием электронной элементной базы:

  • вакуумные лампы;

  • полупроводниковые транзисторы;

  • интегральные микросхемы;

  • микропроцессоры.

К первому поколению вычислительных устройств, базирующемуся на лампах можно отнести ENIAC (США, 1946 г.), ЭВМ БСЭМ-2 (СССР, 1949 г.). Эти машины позволяли производить до 20 тысяч операций в секунду и в качестве устройства ввода использовали перфокарты. Огромные габариты и энергопотребление таких устройств обусловлено особенностями используемой элементной базы.

Самый первый компьютер под названием ENIAC, созданный в 1946 году имел массу более двадцати тонн и занимал огромное помещение площадью порядка 150 квадратных метров.

Рис. 2. ENIAC — первый компьютер на электронных лампах.

Следующий этап развития ЭВМ связан с изобретением полупроводникового транзистора — компактного и экономичного аналога электронной лампы. Быстродействие подобных устройств увеличилось уже до сотен тысяч операций в секунду, а их габариты и энергопотребление значительно снизилось. Что привело к более широкому распространению ЭВМ и упрощению взаимодействия с пользователем. Одним из представителей семейства полупроводниковых машин является ЭВМ БСЭМ-6 (СССР, 1959 г.)

Объединение транзисторных схем в отдельные интегральные микросхемы (ИМС) дало толчок третьему поколению компьютеров. Для этого этапа характерно дальнейшее увеличение производительности и снижение стоимости производства и эксплуатации. А также появление различных периферийных устройств, таких как накопители на магнитных дисках, дисплеи, графопостроители. Среди машин третьего поколения можно выделить IBM-360 (США) и ЕС ЭВМ (СССР).

В настоящее время все компьютеры относятся к четвертому поколению и основаны на использовании микропроцессоров — сверхбольших интегральных схем. Это первый тип компьютеров, который появился в розничной продаже.

Первые компьютеры — это профессия. До того как были созданы компьютерные устройства, компьютерами называли людей, занимавшихся выполнением сложных вычислений на арифмометрах. Как правило, этой профессией овладевали женщины, многие из которых затем с успехом работали программистами.

Что мы узнали?

История развития вычислительной техники берет свое начало в древности. Первыми приспособлениями для вычислений были счеты, логарифмические линейки, арифмометры. Прообразом современного компьютера была аналитическая машина Чарльза Бэббиджа. Развитие компьютерной техники проходило параллельно совершенствованию ее элементной базы: от вакуумных ламп до интегральных микросхем.

  1. /5

    Вопрос 1 из 5

Когда появился первый компьютер

Люди с давних времен сталкивались с необходимостью решать задачи, которые требовали сложных вычислений. Нужно было проводить землемерные работы, торговать, собирать налоги, управлять запасами урожая, путешествовать. Сначала считали на пальцах, камнях, узелках, а потом придумали первые счеты и логарифмические линейки. Кстати, само слово «компьютер» (от англ. compute — «вычислять») долгое время использовали для обозначения человека, производящего расчеты.

В Средние века уже стало понятно, что без специальных машин не обойтись. Так появились первые суммирующие устройства и арифмометры. Прообраз будущего электронного сумматора — важнейшего элемента будущих ЭВМ — описал еще Леонардо да Винчи. В 1969 году специалисты из IBM воспроизвели по чертежам машину да Винчи и еще раз убедились в гениальности ученого.

Далее была счетная машина Вильгельма Шиккарда, суммирующая машина Блеза Паскаля (знаменитая «Паскалина»), счетная машина Готфрида Вильгельма Лейбница и аналогичные изобретения других ученых.

Откуда вообще взялась идея программировать вычислительные операции? Все просто: нужно было все время сонастраивать механизмы башенных часов с системой колоколов. Кроме того, похожие задачи возникали и в других отраслях, например в швейной промышленности. В 1804 году появились перфокарты Жозефа Жаккара для ткацких станков, которые считаются первым устройством для запоминания и ввода информации.

Но ближе всех к созданию компьютера подошел в XIX веке профессор математики Кембриджского университета Чарлз Бебидж, разработавший основные принципы построения вычислительных машин, среди которых программное управление, использование перфокарт и деление информации на разные типы. А первым в истории программистом называют соратницу Бебиджа Аду Лавлейс — дочь знаменитого поэта Байрона. К сожалению, реализовать все идеи кембриджского профессора так и не удалось — это требовало слишком больших затрат, однако его вклад в развитие вычислительной техники трудно переоценить. Две его машины — разностная (1822 год) и аналитическая (1830 год) — опередили свое время.

Прошло еще почти сто лет, прежде чем появился полноценный компьютер в привычном понимании этого слова. Первой в мире ЭВМ считается машина ЕNIАС — проект американских ученых Джона Моучли и Джона Эккерта, который они представили в 1942 году. Но ЕNIАС возник не сам по себе: примерно в одно и то же время появилось несколько машин, которые с оговоркой тоже могут претендовать на звание первого компьютера.

Индустрия 4.0

Новая жизнь: какая техника становится экспонатом музея

Хитроумная машина Семена Корсакова

В России XIX века был свой Чарлз Бебидж — Семен Корсаков, дворянин, успешный государственный деятель, который помимо гомеопатии увлекался еще и изобретением интеллектуальных машин.

В 1832 году Корсаков опубликовал брошюру «Начертание нового способа исследования при помощи машин, сравнивающих идеи» и представил ее Академии наук. Для хранения и кодирования информации он предлагал использовать перфокарты — те самые деревянные пластинки с отверстиями, которые тогда применялись только в ткацких станках Жаккарда.

Всего машин было пять: линейный гомеоскоп с неподвижными деталями, линейный гомеоскоп с подвижными деталями, плоский гомеоскоп, идеоскоп и простой компатор. Все машины помогали не только упорядочивать, но и сравнивать большие объемы данных. Сам Корсаков использовал их для составления базы лекарств по гомеопатии. Ученый задавался вопросом «Как найти нужное лекарство для пациента?». И нашел ответ: нужно «набрать» на деревянной пластинке всю картину болезни, например тошнота, головная боль, температура, и сравнить, совпадут ли выдвижные штырьки с отверстиями перфокарты.

Но тогда никто не оценил идеи Корсакова, изобретение отклонили, хотя подобным образом уже тогда можно было классифицировать практически любую информацию, в том числе военные сведения. Сам ученый тоже понимал, что время для его машин еще не пришло.

Простой компаратор

(Фото: computer-museum.ru)

Принципы работы компьютеров Конрада Цузе

Идея о возможности построения автоматизированного счетного аппарата пришла в голову немецкому инженеру Конраду Цузе ( Konrad Zuse ) и в 1934 г. Цузе сформулировал основные принципы, на которых должны работать будущие компьютеры:

  • двоичная система счисления;
  • использование устройств, работающих по принципу «да / нет» (логические 1 / 0);
  • полностью автоматизированный процесс работы вычислителя;
  • программное управление процессом вычислений;
  • поддержка арифметики с плавающей запятой;
  • использование памяти большой емкости.

Цузе первым в мире определил, что обработка данных начинается с бита (бит он называл «статусом да / нет», а формулы двоичной алгебры — условными суждениями), первым ввел термин «машинное слово» (Word), первым объединил в вычислители арифметические и логические операции, отметив, что «элементарная операция компьютера — проверка двух двоичных чисел на равенство. Результатом будет тоже двоичное число с двумя значениями (равно, не равно)».

Cookie файлы бывают различных типов:

Необходимые. Эти файлы нужны для обеспечения правильной работы сайта, использования его функций. Отключение использования таких файлов приведет к падению производительности сайта, невозможности использовать его компоненты и сервисы.

Файлы cookie, относящиеся к производительности, эффективности и аналитике. Данные файлы позволяют анализировать взаимодействие посетителей с сайтом, оптимизировать содержание сайта, измерять эффективность рекламных кампаний, предоставляя информацию о количестве посетителей сайта, времени его использования, возникающих ошибках.

Рекламные файлы cookie определяют, какие сайты Вы посещали и как часто, какие ссылки Вы выбирали, что позволяет показывать Вам рекламные объявления, которые заинтересуют именно Вас.

Электронная почта. Мы также можем использовать технологии, позволяющие отслеживать, открывали ли вы, прочитали или переадресовывали определенные сообщения, отправленные нами на вашу электронную почту. Это необходимо, чтобы сделать наши средства коммуникации более полезными для пользователя. Если вы не желаете, чтобы мы получали сведения об этом, вам нужно аннулировать подписку посредством ссылки «Отписаться» («Unsubscribe»), находящейся внизу соответствующей электронной рассылки.

Сторонние веб-сервисы. Иногда на данном сайте мы используем сторонние веб-сервисы. Например, для отображения тех или иных элементов (изображения, видео, презентации и т. п.), организации опросов и т. п. Как и в случае с кнопками доступа к социальным сетям, мы не можем препятствовать сбору этими сайтами или внешними доменами информации о том, как вы используете содержание сайта.

Механические расчеты

В связи с распространением торговых операций и океаническим судоходством возникла потребность в автоматических вычислениях. В двухтомном собрании рукописей итальянского ученого Леонардо да Винчи (XV–XVI век) содержится описание 13-разрядного суммирующего устройства, состоящего из стержней, на которые крепятся два зубчатых колеса: с одной стороны — большее, с другой — меньшее. Суммирующая машина Леонардо да Винчи, однако, так и осталась одним из нереализованных его проектов.

В 1623 году немецкий ученый Вильгельм Шиккард (1592–1635) разработал машину, названную им «счетные часы» и предназначенную для суммирования и умножения шестизначных чисел. Машина Шиккарда состояла из суммирующего устройства, множительного устройства и устройства для записи промежуточных результатов. Устройство было шестиразрядным, в каждом разряде на оси имелись закрепленная шестеренка с десятью зубцами и колесо с одним «пальцем», служившим для передачи десятка в следующий разряд. Были изготовлены два экземпляра машины Шиккарда, однако оба они сгорели во время пожара.

Машины Леонардо да Винчи и Шиккарда были забыты, поэтому длительное время считалось, что создателем первой арифметической машины является французский ученый Блез Паскаль (1623–1662). В 1960-х годах были изготовлены машины Леонардо и Шиккарда, доказавшие свою работоспособность.

Первая модель суммирующей машины Паскаля была создана в 1642 году. В дальнейшем изобретатель неоднократно ее совершенствовал, экспериментируя с материалами и формой деталей. Всего Паскаль создал более 50 моделей машины, названной «Паскалина», из них сохранилось восемь. Машина представляла собой небольшой ящичек с восемью круглыми отверстиями и нанесенной вокруг них круговой шкалой. Шкала крайнего правого отверстия была разделена на 12 частей, соседнего с ним — на 20, остальных — на 10. Такая градуировка была связана с тем, что Паскаль создавал свою машину в помощь отцу, сборщику налогов, и поэтому она соответствовала тогдашней монетной системе (1 ливр = 20 су = 240 денье). В отверстиях располагались зубчатые колеса, число зубьев колеса соответствовало числу делений шкалы данного отверстия. Один из зубцов каждой шестерни был немного удлинен и задевал соседнее колесо. «Паскалина» не получила широкого распространения в связи с ее высокой стоимостью, а также с незначительными вычислительными способностями — в частности, с неудобством выполнения операций вычитания.

В 1673 году Готфрид Лейбниц создал «ступенчатый вычислитель». В основе арифмометра Лейбница лежит ступенчатый валик (или колесо Лейбница), который впоследствии использовался в конструкции вычислительных машин на протяжении трехсот лет. Ступенчатый валик представлял собой цилиндр с зубцами разной длины, которые взаимодействуют со счётным колесом. Передвигая колесо вдоль валика, его вводили в зацепление с необходимым числом зубцов и обеспечивали установку определённой цифры. Механизм ввода слагаемых находился на подвижной каретке. Конструкция арифмометра включала две вращающиеся рукоятки: одна — для сдвига подвижной каретки, другая — для вращения ступенчатого колеса, что позволяло ускорить повторяющиеся операции сложения, при помощи которых выполнялись умножение и деление. Машина работала с 12-разрядными числами, позволяла производить операции сложения, вычитания, умножения, деления и извлечения квадратного корня.

Появившиеся в XVII–XVIII веках модели арифмометров не нашли широкого распространения, оставшись в основном в виде демонстрационных моделей.

Понравилась статья? Поделиться с друзьями:
Заработок в Интернете
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: